\(\int \frac {\text {sech}^3(c+d x)}{(a+b \tanh ^2(c+d x))^2} \, dx\) [120]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 72 \[ \int \frac {\text {sech}^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {\arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} \sqrt {a+b} d}+\frac {\sinh (c+d x)}{2 a d \left (a+(a+b) \sinh ^2(c+d x)\right )} \]

[Out]

1/2*sinh(d*x+c)/a/d/(a+(a+b)*sinh(d*x+c)^2)+1/2*arctan(sinh(d*x+c)*(a+b)^(1/2)/a^(1/2))/a^(3/2)/d/(a+b)^(1/2)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3757, 205, 211} \[ \int \frac {\text {sech}^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {\arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} d \sqrt {a+b}}+\frac {\sinh (c+d x)}{2 a d \left ((a+b) \sinh ^2(c+d x)+a\right )} \]

[In]

Int[Sech[c + d*x]^3/(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

ArcTan[(Sqrt[a + b]*Sinh[c + d*x])/Sqrt[a]]/(2*a^(3/2)*Sqrt[a + b]*d) + Sinh[c + d*x]/(2*a*d*(a + (a + b)*Sinh
[c + d*x]^2))

Rule 205

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (
IntegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[
p])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3757

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> With[{ff = F
reeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[ExpandToSum[b*(ff*x)^n + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 -
ff^2*x^2)^((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] &&
IntegerQ[n/2] && IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {1}{\left (a+(a+b) x^2\right )^2} \, dx,x,\sinh (c+d x)\right )}{d} \\ & = \frac {\sinh (c+d x)}{2 a d \left (a+(a+b) \sinh ^2(c+d x)\right )}+\frac {\text {Subst}\left (\int \frac {1}{a+(a+b) x^2} \, dx,x,\sinh (c+d x)\right )}{2 a d} \\ & = \frac {\arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} \sqrt {a+b} d}+\frac {\sinh (c+d x)}{2 a d \left (a+(a+b) \sinh ^2(c+d x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 69, normalized size of antiderivative = 0.96 \[ \int \frac {\text {sech}^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {\frac {\arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a+b}}+\frac {\sqrt {a} \sinh (c+d x)}{a+(a+b) \sinh ^2(c+d x)}}{2 a^{3/2} d} \]

[In]

Integrate[Sech[c + d*x]^3/(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

(ArcTan[(Sqrt[a + b]*Sinh[c + d*x])/Sqrt[a]]/Sqrt[a + b] + (Sqrt[a]*Sinh[c + d*x])/(a + (a + b)*Sinh[c + d*x]^
2))/(2*a^(3/2)*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(182\) vs. \(2(60)=120\).

Time = 35.27 (sec) , antiderivative size = 183, normalized size of antiderivative = 2.54

method result size
risch \(\frac {{\mathrm e}^{d x +c} \left ({\mathrm e}^{2 d x +2 c}-1\right )}{d a \left (a \,{\mathrm e}^{4 d x +4 c}+b \,{\mathrm e}^{4 d x +4 c}+2 \,{\mathrm e}^{2 d x +2 c} a -2 b \,{\mathrm e}^{2 d x +2 c}+a +b \right )}-\frac {\ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 a \,{\mathrm e}^{d x +c}}{\sqrt {-a^{2}-a b}}-1\right )}{4 \sqrt {-a^{2}-a b}\, d a}+\frac {\ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a \,{\mathrm e}^{d x +c}}{\sqrt {-a^{2}-a b}}-1\right )}{4 \sqrt {-a^{2}-a b}\, d a}\) \(183\)
derivativedivides \(\frac {\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{a}+\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{a}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a}-\frac {\left (\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}+\frac {\left (\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}}{d}\) \(228\)
default \(\frac {\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{a}+\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{a}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +a}-\frac {\left (\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}+\frac {\left (\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}}{d}\) \(228\)

[In]

int(sech(d*x+c)^3/(a+b*tanh(d*x+c)^2)^2,x,method=_RETURNVERBOSE)

[Out]

exp(d*x+c)*(exp(2*d*x+2*c)-1)/d/a/(a*exp(4*d*x+4*c)+b*exp(4*d*x+4*c)+2*exp(2*d*x+2*c)*a-2*b*exp(2*d*x+2*c)+a+b
)-1/4/(-a^2-a*b)^(1/2)/d/a*ln(exp(2*d*x+2*c)-2*a/(-a^2-a*b)^(1/2)*exp(d*x+c)-1)+1/4/(-a^2-a*b)^(1/2)/d/a*ln(ex
p(2*d*x+2*c)+2*a/(-a^2-a*b)^(1/2)*exp(d*x+c)-1)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 741 vs. \(2 (60) = 120\).

Time = 0.29 (sec) , antiderivative size = 1555, normalized size of antiderivative = 21.60 \[ \int \frac {\text {sech}^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate(sech(d*x+c)^3/(a+b*tanh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[1/4*(4*(a^2 + a*b)*cosh(d*x + c)^3 + 12*(a^2 + a*b)*cosh(d*x + c)*sinh(d*x + c)^2 + 4*(a^2 + a*b)*sinh(d*x +
c)^3 - ((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a - b
)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a -
b)*cosh(d*x + c))*sinh(d*x + c) + a + b)*sqrt(-a^2 - a*b)*log(((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x +
c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 - 2*(3*a + b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 - 3*
a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 - (3*a + b)*cosh(d*x + c))*sinh(d*x + c) - 4*(cosh(d*x + c
)^3 + 3*cosh(d*x + c)*sinh(d*x + c)^2 + sinh(d*x + c)^3 + (3*cosh(d*x + c)^2 - 1)*sinh(d*x + c) - cosh(d*x + c
))*sqrt(-a^2 - a*b) + a + b)/((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh
(d*x + c)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*c
osh(d*x + c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b)) - 4*(a^2 + a*b)*cosh(d*x + c) + 4*(3*(a^2 + a*
b)*cosh(d*x + c)^2 - a^2 - a*b)*sinh(d*x + c))/((a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^4 + 4*(a^4 + 2*a^3*b
 + a^2*b^2)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^4 + 2*a^3*b + a^2*b^2)*d*sinh(d*x + c)^4 + 2*(a^4 - a^2*b^2)*
d*cosh(d*x + c)^2 + 2*(3*(a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^2 + (a^4 - a^2*b^2)*d)*sinh(d*x + c)^2 + (a
^4 + 2*a^3*b + a^2*b^2)*d + 4*((a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^3 + (a^4 - a^2*b^2)*d*cosh(d*x + c))*
sinh(d*x + c)), 1/2*(2*(a^2 + a*b)*cosh(d*x + c)^3 + 6*(a^2 + a*b)*cosh(d*x + c)*sinh(d*x + c)^2 + 2*(a^2 + a*
b)*sinh(d*x + c)^3 + ((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c
)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x
+ c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b)*sqrt(a^2 + a*b)*arctan(1/2*((a + b)*cosh(d*x + c)^3 + 3
*(a + b)*cosh(d*x + c)*sinh(d*x + c)^2 + (a + b)*sinh(d*x + c)^3 + (3*a - b)*cosh(d*x + c) + (3*(a + b)*cosh(d
*x + c)^2 + 3*a - b)*sinh(d*x + c))/sqrt(a^2 + a*b)) + ((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d*x + c)*sinh
(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 + a - b)*sinh
(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b)*sqrt(a^2 + a*b)*arcta
n(1/2*sqrt(a^2 + a*b)*(cosh(d*x + c) + sinh(d*x + c))/a) - 2*(a^2 + a*b)*cosh(d*x + c) + 2*(3*(a^2 + a*b)*cosh
(d*x + c)^2 - a^2 - a*b)*sinh(d*x + c))/((a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^4 + 4*(a^4 + 2*a^3*b + a^2*
b^2)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^4 + 2*a^3*b + a^2*b^2)*d*sinh(d*x + c)^4 + 2*(a^4 - a^2*b^2)*d*cosh(
d*x + c)^2 + 2*(3*(a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^2 + (a^4 - a^2*b^2)*d)*sinh(d*x + c)^2 + (a^4 + 2*
a^3*b + a^2*b^2)*d + 4*((a^4 + 2*a^3*b + a^2*b^2)*d*cosh(d*x + c)^3 + (a^4 - a^2*b^2)*d*cosh(d*x + c))*sinh(d*
x + c))]

Sympy [F]

\[ \int \frac {\text {sech}^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int \frac {\operatorname {sech}^{3}{\left (c + d x \right )}}{\left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{2}}\, dx \]

[In]

integrate(sech(d*x+c)**3/(a+b*tanh(d*x+c)**2)**2,x)

[Out]

Integral(sech(c + d*x)**3/(a + b*tanh(c + d*x)**2)**2, x)

Maxima [F]

\[ \int \frac {\text {sech}^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int { \frac {\operatorname {sech}\left (d x + c\right )^{3}}{{\left (b \tanh \left (d x + c\right )^{2} + a\right )}^{2}} \,d x } \]

[In]

integrate(sech(d*x+c)^3/(a+b*tanh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

((a*e^(3*c) + b*e^(3*c))*e^(3*d*x) - (a*e^c + b*e^c)*e^(d*x))/(a^3*d + 2*a^2*b*d + a*b^2*d + (a^3*d*e^(4*c) +
2*a^2*b*d*e^(4*c) + a*b^2*d*e^(4*c))*e^(4*d*x) + 2*(a^3*d*e^(2*c) - a*b^2*d*e^(2*c))*e^(2*d*x)) + 8*integrate(
1/8*(e^(3*d*x + 3*c) + e^(d*x + c))/(a^2 + a*b + (a^2*e^(4*c) + a*b*e^(4*c))*e^(4*d*x) + 2*(a^2*e^(2*c) - a*b*
e^(2*c))*e^(2*d*x)), x)

Giac [F]

\[ \int \frac {\text {sech}^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int { \frac {\operatorname {sech}\left (d x + c\right )^{3}}{{\left (b \tanh \left (d x + c\right )^{2} + a\right )}^{2}} \,d x } \]

[In]

integrate(sech(d*x+c)^3/(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {sech}^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int \frac {1}{{\mathrm {cosh}\left (c+d\,x\right )}^3\,{\left (b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \]

[In]

int(1/(cosh(c + d*x)^3*(a + b*tanh(c + d*x)^2)^2),x)

[Out]

int(1/(cosh(c + d*x)^3*(a + b*tanh(c + d*x)^2)^2), x)